EZVENT DRIVEN GRAPHICAL MENU INTERACTION

Ted Crane and Jon H.

Pittman

Cornell Universzity
Ithaca, New York

ABSTRACT

L software package to facilitate the development of computer

grapnicsa

application code is described.

for the
programa.

development

control and menu display szoftware independent of
This package iz also useful
of interactive,

but non=-graphic,

A graphics program iz discuased as a finite state automaton.

The program
aotions {(tranaitions)
received while

input.
Program

development tools

1s treated az a
betyeen menus
in a given state.
in the menu and control structure

based

set of menus (statea) with
based on the input
Virtual devices embedded
are employed to supply

an these concepts and

run=time saftware tools which provide the control structure,

interacticn Zechanisms, and menu display for a graphizs
progreo are fazcribed.

The steps to be followed in the development af an
inceractive graphics program are outlined. Finally, an

example of use of this package iz provided.

- 4

~-ing current methods, application programmers must
te code to display graphic menus, interact with

—roese menua, and arganize the flow of control within

a program. Thia 1is waually done before the
application portion of the program iz written.
Programming the menu and [low of control thus
results in a large expenditurs of time and affort

sefore the programmer may directly address the isaue

at nand. Thia approach to Lthe development of an
interactive graphics program has a number of
drawbacks:

1. The application programmer is forced to deal
with the implementation of program control and
interaction {i.a. syntax of the user
interface) rather than with the application

{i.e. semantica of the user interface).

Menu display and control structure coding i3
spread throughout the program and may even be
duplicated in several different places within a
program.

The applications programmer "rainvents the
wheel™ by writing new menu display and control
code for each new program (or worse, adapts
menus and control atructure from a previcusly
developed program wWithout understanding the
reagsoning behind thelr deaign).

The potential exists for a lack of conaistency
in menu design within a program and between
programs, thus resulting 1io poor user
interfaces.

Proceedings of the Digitsl Equipment Compuer Usars Soclety

77

5. The
is
the

lack of a common =eans oy which interaction
implemented results in inefficient use of
underlying graphics sortware.

To address thease problems and provide the
applicationz programmer with an efficient means of
ereating a good uaer interface, several thinga must
be done. First, menuing and control functions must
be isolated from the application program. Second,
the application programeer must be provided with a
means of quickly defining and modifying the menu and
control structure and an easy meana of integrating
application modules with the menu and control
atrueture. Third, program modularity ahould be
encouraged by separating application routines from
the program structure and allowing them to operate
asa independent entitiea. Finally, a =et af
"primitive® interaction devicea which handle both
input and syntactic reedback functions must be
provided. Previcua attempta to addreas these issues
have included menu design programs and software that
implements virtual devices. The concepts and
limitationa of these two approaches are discussed
below.

St Lows, Missoury - May 1983

Menu deaign programs generally produce graphica
display data in the form of =2ource language
"inolude® (or "require®) text files which are
inserted into the applicaticon preogram and then
compiled. They may alzo produce actual
language-specific source code that 1s compiled and
performa program control flow functiona. The filea
produced by =such menu generators are usually edited
by the application programmer to incorporate Lesats
and coding aspecific to the application. While
addresasing some of the issues centioned above, thia
approach leaves a final versicn of the preogram that
is a mixture of menu diaplay, graphic interaction,
and program control code.

¥irtual devices are library software procedures that
deal with physical devicea and simulate physical
devices graphically. For example, a vwvirtual
pushbutton may actually be a graphic menu awitch
that is controlled by a atylus and tablet. Such
virtual devices provide the means to easily program
individual instances of menu interaction, but do not
incorporate an overall menuing and flow of control
structure for the program.

Eropoged Solutlon,

We nave Cried to acdress these proplems Dy deslgning
a aystem that allows the user 0o describe menus and
sontrol structure through i menu description
language. The language is :ranslated and program
control tables which drive the application program
through a runtime 3software fackage are generated.
The application code consists of a set of action
routines which are inveoked irn response [o the =zenu
and control syatem’s recogniticn of a ayntactically
valid input.

This system allows the programmer to describe the
menu interaction and program control structure as a
finite state machine. Each 3tate in the finite
state machina i3 equivalent to a graphic menu and
transitions between atates {genua) correspond to
valid inputs received from virtual devices.

For each menu, a set of valid virtual device inputs
ia defined. The interactive menu display is
composed of a set of virtual devices. Some of the
virtual devices such as buttonsa; valuators, and
selectors may be displayed graphnically while othera,
such as timers and keyboard inputs, have no
graphical representation.

This ayatem is event-driven. It has the capabllity
to queue individual events (virtual device inputa)
and process them on a first in, firast out basis.

Whenever a valid input for a particular menu ia
found, a transition to another menu may ocour and an
application-apecific action routine may be called.
In this way, the application program is driven by
the menu and control structure.

PN

Il Ii
MENUS EVENTS/Virt.Devics [nput

=k \ v

Halp & Memm Application Fhymical Graphis Program

Prompting mmrlll \ Smalation G-:MI
‘\Z///
EVENT QUEUE

Vo

PROGRAM CONTROL
Components of Menu Interaction System

Finite State Machioe,

The graphical menu interaction system ia based on
the finite-state machine concept. A finite
automaton has been defined by Hopeoroft and Ullman:

"y finite automaton (FA) consista aof a
fiznitm amt 2f states srd zet of tranaitions
from state to atate that ooour on input
symbols from an alohabet E. For each input
symbol,; there is exactly one tranaition out
of each state (possibly back to the state
itself). One state. usually denoted g0, 1is
the initial stace. in wnich tha automaton
atarta. Some states are designated as final
or accepting atates.”

In a finite atate machine. the current state iz the
result of the previous set of transitions. Thuas,
the current state is the result of the stream of all
input symbols to the machine.

A finite automaton can be represented by a directed
graph, called a transition diagram. In such a
graph, the verticiea of the graph denote the stateas
and the arcas of the graph denote the tranaitions.
The transition diagram can, in turn, be represented
by a table of individual states with their allowable
inputs and the actiona to be taken upon transition.
from cne state to the next. {

Finite automata are wused in wmany traditional
programming applications, such as compiler deaign
and text editors, but are a useful means of
atructuring a graphics program as well. Since
graphics control code 1s often repetitive code. (a°
aet of case or goto statements), the nuntruli
structure can be represented as a transition diagram
in table form. A general purpose routine can be
provided to direct the flow of control along patha
specified in the tranmasition table. The same table
can also contain information regarding the treatment
and diaplay of wvirtual devicea.

The following example i{lluatrates the concept of a
graphics program as a finite state machine. It i=
an inking program which accepts input and draws a
line as if it were being inked with a fountain pen.
Inking is a fairly standard graphics input technique
and can easily be represented as a finite atate
machine.

sirst, W& show how an inking routine is written
4aing traditional methodas.

nking loop, sample coding
_note application-specific code {underlined).

l POINT COUNT = 0
do
begin
| display menu - may be lots of code
| read naw pen valua - via graphics package

end
until PEN_SWITCH eqlu DOWN
do
begin
FPQINT COUNT = POINT COUNT + 1

| display menu = duplicate of above
| read new pen value - via graphics package
end

wille PEN_SWITCH eqlu DOWN

This program can be represented by the following

finite atate diagram:

pen up
; _: I
Start Wait for Ink Curve Done

pen down

Sample Finite State Machine — Inking Loop

The finite state diagram can, in turn be represented
by a finite state machine table:

Current State |Input Pen Token
UF DOMM
Hew State

1 Start 2 invalid

2 Wit Pen Down 2 k|

3 Ink Loop 4 k]

4 Dome none noae

FSM Table to Describe Inking Loop

Although this example is a fairly trivial one, it ia

clear that the finite astate machine can be an
efficient way to represent a graphies program. or
courae, as graphics programs increase in size and

complexity, the economy of dealing with menus and
graphic interaction through a finite atate mechanism
increases greatly.

The graphical menu interaction sysatem consista of
several components:

* a collection of virtual devices;

* an event queue
inputs;

for handling virtual device

% & vocabulary for
atructure;

defining menus and control

* a tranalator to convert the menu and econtrol
description to machine-readable code which may
be linked with an application program;

* runtime software to handle menu
virtual devices and menu
control flow.

dizplay,
interaction, and

Each of these components will be described in detail
below.

Yirtual Devicea,

The wirtwal devices in the graphical menu
interaction ayatem process user input tokens (i.e.
a button push, a keyboard string, a control
character. a digitized value, a timer expiring) and
emit "events"™ which are placed in a queue to be
processed sequentially by the runtime software. A
virtual device may be an interface to a physical
device or it may aimulate a physical device uaing a
combination of software and another physical device.

Six wvirtual device types are included in the initial
deaign of the graphical menu interaction system:
keyboard, button, cloeck; valuator, and selector.

1. Eayboard. A keyboard handles a string of
characters or a control character that is input
from a phyalcal keybcard device. A stripng of
characteras ia defined as a sequence of
characters that 13 terminated by a control
character (a character with an ASCII value
between 0 and 31). A control character may
itaelf be an input token. If an input string
is terminated with any control character other
than <CR> (ASCII 13), the input atring and the
control character are placed on the event queue
as two separate events: the string and the
control character.

The keyboard definition contains a list of
valid tokens. A token may be a string, a
numeric expresaion, a filename, a date, or a
gontrol character. When keyboard input 1is
encountered, the list of wvallid tokens 1a
aparched for a match. If one is found, the
tranaition associated with it is taken and thae
asagciated action routine, if any, is called.
A facility for checidng the range of Dumeric
values ““and dates- is provided and several
disorete ranges may be apecified. L

If a token is received that ia not in the Llist
of valid tokens, an optional "otherwise®
directive can describe a default tranaition to
make.

Before accepting input, the keyboard wvirtual
device displays a prompt which is defined in
the keyboard virtual device apecification.

The current design of the keyboard wirtual
device assumes a phyaical keyboard device. It
iz poasible that a graphic asimulation of a
keyboard will be incorporated. This will allow
for such features as software selectable QWERTY
or DVORAE keyboards and the construction of
special-purpose Kkeyboards for a particular
application.

Button. A button may be one of
nomentary contact or
contact button always generates a ‘"closed!
event, l.e. it causes the zame thing to happen
every time it is hit. A toggle button inverts
its previopua state (saved from a previous
input), and can be used to awitch back and
forth between two options.

two types:
toggle. A momentary

5

Buttons may be either phy=zical or grapnical. a
physical button may be a device szuch as a
button box or keyboard program function zey. A
graphical button i3 aimulated by a sensitive
box area on the sareen.

A atring may be specified as the label for a
button. This atring 13 displayed in the
graphical representation of the button and some
physical button devices allow the display of a
label in an LED display near the button.

S3ince each button cauaes a transition to a new
menu, help text, and action routine may be
associated with each button device.

Clock. A clock virtual device is one that
generates an input token after some specified
time interval has elapsed. The graphical menu
interaction asyatem incorporates two types of
clock virtual devicea: repeating global clocks
and one-shot local timers.

A repeating global clock generates an event
avery ™"n" seconda. Its action is not affected
by the particular astate (menu) which the
program is currently in, hence the designation
as "global™. This type of clock is useful for
handling continuoualy changing displays,
gathering program statistics, ete.

A one-shot local timer i3 restricted in itas
action to a apecific menu. When the atate
(menu) is entered, the clock beginas its count
and, 1if the menu is atill active after "n"
seconda, the timer generates an event. Thia
type of timer is useful to prompt for input or
cause a timeout to go to a different state.

As with any other virtual device, both clock
typea generate input tokena. Therefore, a new
menu and an agtion routine may be assoclated
with a ocloek input. Several different clocks
with different time inorements may . be
associated with a given program or menu.

4.

6.

the keypad functions

Valuator. A valuator is a virtual deviece that
returns a valua or set of values within a
specified range. A valuator may be one, two,
or n-dimensional. A one=dimensional valuator
{physically, a alide or dial potenticmeter)
returnad one value within a specified range. A
two=-dimensional valuator (physically, a
joystick or digitizing tablet) returns two
valuea within a specified range. The graphie
menu interaction system also has the capability
to deal with n-dimensional wvaluators which
return n values.

A valuater may return absolute or relative
values. An abszolute value iz a number within a
range, & relative value is the amount of change
since the laat time the valuator returned a
value. The range from which the valuator iz to
return ita values must be apecified for each
dimension of the valuator. A function can be
specified for eamch value. This function
modifies the value thus allowing secaling ar
nonlinear cutput from the valuator.

Like buttons, a wvaluator may be
device or a graphi aimulation. A valuator
generates an event with each wuse, thus an
action routine, help, and a new menu may be
assoclated with a valuacor.

a physical

Selector. A selector virtual device allows one
to select "one of many" in a set. A selector
preaenta a list of options and leta one choose
from that 1list. It can be viewed 2s an array
of buttons but, unlike a collection of
individual buttons, the szelector acta as a
aingle device. A selector may be momentary or
toggle, Juat like a button. A toggle selector
allows only one member of the liat of choices
to be aective at any given time, whereas the
mcmentary selector allowas one to choose a
member of the liat for a given action but does
not "remember™ its state.

A selector is defined by apecifying a ascreen
position and number of columns. The graphic
menu interaction system generates the bounds of
each sensitive area with the selector array.

For each selector choice, the choice definition
may aspecify a display label, help text, an
action routine, and a new menu state.

Eeypad. A keypad virtual device simulates a
caleculator and permits the user to input
numeric wvalues. It 1ia, in effect, a
apecial-purpose keyboard with the additional
capability to do arithmetic computationsa. This
functionality ocould be implemented by an
application programmer. but would require a
aignificant amount of effort. The keypad
device is one of many higher level wirtual
devices that could be available to aimplify the
application programmer's task.

The keypad functions as a whole unit, and an
avent 1s generated only after the user hita the
"enter® key on the keypad. Until that time,
may be used without"
invoking any other program components. .

The programmer defines a keypad by indicating a
position, an optional default value which is
placed in the numeric area when the menu is
entered, an optional mesaage which iz placed in
the keypad's message area, a new menu, halp
text, and an action routine.

The keypad has the following componenta:

1. Message area. The measage area diasplays the
message atring apecified in the keypad
definition,

2, Humeric area. The numeric area displaya the
numeric value being calculated.

3. Humeric keya. The 0-9, ".", and "E" keys allow
the entry of numeric values.

4., Operator keya. The "+", ".F 7% ®/% and "="
keya parform the the usual arithmetic
caleculations.

5. DELETE key. The delete key deletes the last
digit typed on the keypad.

fi. CLEAR key. The olear key sets the numeric
value to Q.d.

7. ENTER key. The ENTER key causes an avent to be
placed on the event queue and passes the keypad
input (the value of the expresaion currently in
the numberic area) to an action routine.

4 menu 1a composed of a collection of these wirtual
avices. In addition, a zenu may contain several
Jther entitlies such as:

* a prompt to direct the user to take action;

* 3 timed prompt to direet the user to take
action after a apecified time Iinterval has
axpiread:

* a set of display porta in which user data is
displayed;

* a sat of message ports io which help text is
displayed;

* groupa of virtual devices;

submenus;

#* graphic entitles such as text, lines, and
boxea.

-

Overlapping virtual devices are displayed and
sslected based on the order in which they are
defined — the first device 1z "in froat™ and
obascures devices behind 4it. Message ports have a
bigher priority ("in front of™) than virtual devicea
but a lower priority in any selection testa.
Application display ports have lower priority
("behind®) than virtual devices.

Although the current system design has only these
3ix wvirtual device types, it ia open-ended enough
that more virtual device types could be added at a
later date.

Event Queus,

The virtual devices implemented by runtime software
generate eventa and place them on an event input
queue. When an event 4is available on the input
queue, the mpenu software dequeues it and evaluatea
it in the context of the current menu. Unexpected
events (touching am inactive button, for example)
may be rejected and, if requested by the application
designer. a warning issued. When a match occura
between the event and a transition defined for the
current menu, the menu software may call an action
routine (so the application can make use of the
input) and/or the program may change satate to a new
ménu. Once the event has been processed, the queue
entry 1s deleted.

The runtime software is divided into two independent
portions which communicate through the event queue.
The "virtual device input®™ portion of the software
runa at an elevated priarity level (in the VAXI/VMS
enviromment, AST driven) relative to the ™"menu
control®™ software. The "menu control®™ software is
normally idle (in the VAX/VMS enviromment.
hibernating or waiting for a local event flag),
walting for an event to be placed on the event
queue. Sufficient memory must be allocated to the
event queue s0 that the potential combination of a
fast input device (such as a free running digitizer)
and a slow transition action routine (such as a
complex engineering analysis on every digicized
point) will not overflow the gueue. When aventa are
missed, a warning ceasage will be displayed.

The runtime software also keeps a backwards chain of
tranaitions. In the menu description it is poasible
to apecify a "RETURN"™ transition. If auch a
transition 13 taken, the program goea to the
previous atate in the chain.

Meou Vocabulary,

The menus and control atructure of the program are
apecifled by a keyword-pased language. Thia
language describes the varioua components that make
up the menu and the actiona to be taken in response
to the manipulation of these components. This
language consists of text strings written in a
sequential file.

The complete language description ia too large to
liat here, but a representative portion of it i=
prasented below. This portion containa definitions
for the menu construct and some virtual devices.

NAME = <name>

[, VIEWPORT(<position_value>)]
[, HELP_LIBRARY = <filename>]

[, HELP_TEIT = <help text>]

[, INIT_ROUTINE = <routine_pame>]
[, DONE_ROUTINE = <routine_pame>]
[, PROMPT = <help_text>]

[, TIMED_PROMPT = <help text>]

[, PROMPT_TIMER = <pumber>]

[, OPTIONS = { WARN | NOWARN }]
[, MESSAGE_PORT(<position_value>)]
[, <submenu>] O-n

[, <display_port>] O=-n

[<virtual device>] O=n

[, <group>] 0-n

[, <graphic_entity>] O=n)

{keyboard> := HEYBOARD(
PROMPT = <string>
[, <token>] 1-n
[, OTHERWISE(HEW_MENU = <new menu> [,
ACTION = <routine_name>])])

<{token> := TOKEN(C

{ TEXT = <string>
[, MATCH_CHARS = <number>] |
CONTROL_CHAR(<number>) |
NUMBER([<number> | <range> }) |
FILENAME |
DATE }

[, NEW_MENU = <new_menu>]

[, BELE _TEXT = <help text>]

[, ACTION = <routine_name>])

BUTTON({

[MOMENTARY | TOGGLE 1},

[GRAPHIC [{ <poaition_walue>» }] |
PHYSICAL{ <name>) }

[, LABEL = <{atring>]

[, NEW_MENU = <new_menu>]

[, HELP _TEXT = <help text>]

[, ACTION = <routine_name>])}

{button>

{valuator> := VALUATCH(

[GRAPHIC [{ <position_value> }] !

PHYSICAL{ <nama> } },

{ ABSOLUTE | RELATIVE }
NUM_DIMENSIONS = <number>]
RANGE([<range> |
[<range>)
[, { <range> }] 1=n}]}]
y FUNCTION = <routine_name>]
, HMEW_MENU = <new_menu>]
, ACTION = <routine_name>])

L
L

e

<amlector> := SELECTOR(
[MOMENTARY | TOGGLE }
[, POSITION(<po=zition valua>)]
[, NUM_COLUMNS = <number>]
[, <choice>] 1-n }

<keypad> := EKEYPAD(
POSITION(<position_valua)
[, DEFAULT_VALUE = <number>]
[, MESSAGE = <string>]
[, NEW_MENU = <new_menu>]
[, HELP_TEXIT = <help_taxt>]
[, ACTION = <action_routina>])

SOURCE TEIT (BIECT MODULES Shared

Vocabulary—= Tranalator—— FIM Control Tables—e Linker—e Ezecutabie
= i

dication Soecifi
Rowtmes

Menu Software Implementation

Heny Joftware Ipplementation,

In a

YAX/VMS enviromment., the graphical menu

interaction software has three major components:

Translator/Compiler. The translator iz a
standalone wutility which translates the
source language describing the Program
finite state machine 1into tables. Theze
tables are subsequently interpreted by the
runtime syatem to generate graphic menu
displaya and control program execution.
The tablea are produced in the form of
object modules, i.e. lista of commands and
data to be processed by the VAX/VMS linker.
The finite state machine may be described
in one a3ource file or several separate
modules since individual menus are labeled
by a wunique global 3ymbol which can be
resolved by the linker.

Runtime support. The runtime support
system consista of a colleetion of library
routines gathered together in a VAX/VMS
shared library image. Since the routinea
in this image are intended to control the
actual program execution and VAX/VMS shared
images do not zontzin i progre= Eranafer
address, 1t i3 neceszary for the main
routine of zn applization izage to call the
"main" menuw startup routine. This may be
achieved by a small amount of coding in the
application program. but it is preferable
to 3pecify one of the menus as the "main®
Zenu. The ftranslator then generatsa a
minimal routine which ealls the runtime
support library and emits object code which
instructs the linker to use the addreas of
that routine as the program cransfer point.

Menu Creator. The menu oreator is an
application program that can be uaed to
interactively generate the menu wvocabulary
source f[ilea, thus allowing interactive
design and layout of menua and control
structure.

In addition, the menu aoftware relies on the actual
vocabulary (described above) for describing menus
and a database of virtual devices. g

dtepa Jor Use of the System.
To use the graphical menu interaction system. one
would follow these atepa.

1.

Define states and transitiona necessary to
implement the application program. The
definition may initially be =mall and grow
during program development. This ia the
paper planning stage.

Write dummy routines to represent the
initial application code. Compile these
routines.

Dasign a graphic menu, if any, to implement
aach atate. The menu oreator may be used
to apeed this process. Commonly used
submenus may be defined and used withio
saveral major menu displaya. Some menus.
auch as those which allow input only from
physical devices (such as a keyboard), may
not require graphic menus.

k. Get the menu vecabulary source
good shape.

flles in

5. Translate menu description into object code
{using the menu tranalator).

8. Link prototype program to test menu
conceptsa, interaction, and graphic
representation. If changea are deaired,
return to menu creator or text editor.

Having done all the hard part...

T. HReplace dummy action routines with working
application routines and create a working

application program.

To illustrate how the graphical menu interaction
syatem wWorks, we have develcped a zimple graphica
program 23 an example. This program permita a user
to ink (or rubber-band) a path around around an
gbject (such as a cube). The program then generates
3 walk-around view of tha object by moving the
ayepoint along the inked path.

This example consists of three menus (3Cates). The
first atate allows one to 3et a time increment for
the path to be followed; select Detween inking and
rubber banding, move arocund the cube, and exit from
the program. There are additional states for
setting the time fincrement and moving about the
cube.

A atate diagram of this program iz shown below. The

5 a (menus) are represented by circles, and the
&1 Aitions (virtual device inmputa) are represented
by ares.
| i
[| |
: (Diaplay Part) (Claplay Port)

The first menu is the main menu of the program. It
has a main display port, a valuator for inking and
rubber banding, a selector for inking or rubber
banding, a "go® button, a "set time” buttonm, and an
"exit" button. The main display port diaplayas a
plan view of the ocube. The inking and rubber
banding waluator is in the same location as the
display port and allows one to define a path around
the sube. The selector for inking or rubber banding
a i one to choose the input mode for defining the
Peez, The "go"™ button tranafers to a menu which
Uses a reapeating clock svent to initiate display of
Jooessive views of the cube along the inked path.

This menu includes 3 "cancel™ switch which returns
Lo the main menu. The "sec time" button tranafers
to a menu with a calculator to enter the number of
seconds 1t will take to traversze the path. Finally,
the "exit" switch ends executicn of the program.

The menu definition language description of the
program iz as follows: B

program{ name = CUBEWALEK,
action routines

external(DISPLAY_MAIN, display main viewport

|
1
GET_PATH, | read path data from
! valuator
3ET_INK, | aet inking mode
SET_RUBBER_BAND, ! set rubber band mode
DEFINE TIME, | read time from
1 calculator
DISPLAT_WALE, ! display walk around
| cube
CHANGE_POSITICHN | change position along
! walk

menui{ name = MAIN MENU,
display_port({ viewport{ bottom = .2 },
DISPLAY_MAIN
Ve
valuator{ graphic{ bottom = .2 },
absolute,
num_dimensicns = 2,
range((min=0.,max=1.)},
(min=0.,max=1.)
1y
naw_menu = MATN MENU,

action = GET_PATH
y

aelector{ toggle,
position{ lert=.3J%, right=.2,
bottom=.05%, tops.2

1y

num_columns = 1,

choice(label = "Ink",
new_menu = MAIN MENU,
action = SET_INK

Ty

choice(label = "Rubber Band"™
new_menu = MAIN_MENU,
action = SET_RUBBEER BAND

}
]
buctton{ momentary,
graphic{ left=.25. right=.45,
bottom=.05, top=.2
1s
label = "Go"®,
new_menu = [O_IT
1y
button(momentary,
graphic{ left=.5. right=.T,
bottom=.05, top=.2
Y
label = "Set time"”,
new_menu = SET_TIME
Y,
button(momentary,

graphic(left=.T75. right=.95,
bottom=.05,. top=.2
1,
label = "Exit®,
new_menu = return

menu{ name = SET_TIME,

display_port(viewport(bottom = .2 },

DISPLAY_MAIN

Te
keypad(position(left=.75,right=.95,
bottom=.05,top=.45
Yy
default_walue = 5.,

message = "Enter number of seconda”,
new_menu = MATHN MENU,

action = DEFINE_TIME(VALUE)
)

menu{ name = DO_IT,
dizplay_port(viewport(),
DISFLAY_WALK
Ty
elock(global,
time_increment = 1.,
new_menu = DO_IT,
action = CHANGE_POSITION
]
button(momentary,
graphic{ left=.75, right=.95,
boctom=.05, top=.2
Ty
label = "Cancel”,
new_menu = MAIN_MENU

et

)

]
These tables completely define the menu design and
interaction. Hote the seven action routines

declared axternal., They are the only source code
that need be written to complete this program.
Using this method, it is posaible to generate the
menua and control structure before writing the
application code.

The graphical menu interaction system provides an
alternative to the traditional approach to
application program development. It provides a tool
for the application programmer to develop an
application ayatem faster and more efficiently. In
computer programming circlea, there 13 an increasing
awareneas of the need to provide programmers with
tools to improve their productivity. It is our
fealing that the graphical menu interaction syatem
i3 guch a tool.

The aystem, as currently deaigned, still requires
the programmer to spend an inordinate amount of time
designing graphic interaction. However, it does
allow the Programmer to think about graphic
interaction in fairly high level terma. Additional
work in the area of 3software tools for menu and
interaction design certainly seems warranted to
further reduce the deszign time and expertise
required to produce a graphics program.

While deaigning thia syatem, we have received
generally positive interest from the programmers and
implementors of applications software in our
laboratory. In addition, many of these individuals
have, at one time or another, had aimilar ideas.
This 4indicactes to us that the ideas are certainly
worth exploring. We hope that this preliminary
design providea the impetus for further work in thia
area.

Acknowledgements,

The authors would like to thank Carloa I. Pesquera,
whoze "Menu Creator" program wWwas used to draw the
flgures in this paper. We would alsc like to thank
the Program of Computer Graphica at Cornell
University for providing the facilities to prepare
thia paper and the flgures associated with it.

leferences,

1. Brown, James W. "Controlling the
Complexity af Menu Networks"™.
of the 4ACM. July 1982.Vel.

25 T Pg. W412-418.

2. GComputer Graphics. Quarterly report of
ACM/SIGGRAPH. Jamwary 1983 Vol.1T 1.

3. Foley, J.D. and Van Dam, A. Fupdamentals
of loteractive Lomputer Oraphdca
Addison=-Wealey 1982.

4. Hoperoft, John E. and OUllman, Jeffrey D.
Lntroduction fo Automata
and Computation, 1979
Reading, Mass.

Addison-Wealey.

5. Rubel, A. "Graphlic Based Applications
Toola to Fill the Software Gap” Digital
Design. July 1982.

