The Render Button:

How a High-end Graphics Company Developed a
Personal Graphics Product

Jon H. Pittman
Director of Software Development
Wavefront Technologies, Inc.
530 E. Montecito St
Santa Barbara, CA 93103
(805) 962-8117

[decvax!Jucbvaxiucsbesliwavefroljon

Abstract

The Personal Visualizer™ was developed to enable a casual user to
create high-quality rendered images. Providing sophisticated
rendering techniques to casual users forced us to confront a
number of issues and to undergo a shift in values. These issues are
outlined, and the ways we dealt with them are discussed. Things we
would do differently as a result of our development experiences
are also discussed.

Introduction

In July of 1989, Wavefront Technologies, Inc. introduced a product called the Wavefront
Personal Visualizer™. Until that time, Wavefront had been known for high-end
rendering and animation software targeted primarily toward entertainment and creative
graphics. In other words, our products were directed toward people who used expensive
graphics workstations to make “pretty pictures” for a living. The Personal Visualizer is
oriented toward casual users who want to produce realistic images on low-cost
engineering workstations. These people produce images as a means to an end rather than
as an end in itself. They are typically engineers or scientists who use images as one tool
in a set of tools to enable them to do their primary task. They use the product one or two
hours a week rather than forty to eighty hours per week.

Developing the Personal Visualizer resulted in quite a culture shift at Wavefront. Where
previously we focused on achieving ever-higher levels of photorealism and realistic
motion, the Personal Visualizer forced us to learn about usability, information

USENIX Association Fifth Computer Graphics Workshop

99



structuring, graphic user interface design, and simplicity. We had to expand our point of
view beyond features and performance to make our product effective for the casual user.
We found that the overriding design issue for our personal visualization product was one
of conceptual integrity. To make visualization accessible for a casual user, we had to
develop a clean, coherent product in which all of the components related logically to each
other and acted as an integrated whole. We found the words of Fred Brooks, author of
The Mythical Man Month [1], particularly apropos to our development effort:

" ... conceptual integrity is the most important consideration in system
design. It is better to have a system omit certain anomalous features and
improvements, but to reflect one set of design ideas, than to have one
which contains many good, but independent and uncoordinated ideas.”

For an organization such as ours, developing a personal visualization product was often a
process of determining which features to omit in an attempt to achieve conceptual
integrity. This was quite a challenge for an organization used to building products for
expert users. In this paper, | will describe the Personal Visualizer project and product.
| will then discuss some of the specific issues we confronted in developing the Personal
Visualizer. While discussing these issues, | will speculate on some of the things we would
do differently as a result of our experiences and on some of the dlracuuns we can expect
to see personal visualization products take in the future.

The Personal Visualizer project

We originally began discussions with a graphics workstation vendor in January of 1988
on a rendering project. They wanted to take advantage of Wavefront's software rendering
capability to make wireframe and hardware rendered images look “pretty.” The request
was for a magic “render button” that, when pressed, would turn a wireframe or
hardware shaded image into a beautiful photorealistic image. When originally
approached, we were somewhat skeptical of this endeavor. “Surely,” we were told, “it
can't be that difficult to add a button to the screen to render an image!” Of course, the
request was somewhat naive. The problem was not one of adding a button to make the
wireframe beautiful. It was one of underlying data representation and manipulation of all
of the elements necessary to make a photorealistic picture.

Currently, making a photorealistic picture or animation is very much like making a
Hollywood film. Before creating the picture, you must carefully construct a scene which
contains all of the elements in the picture. In addition to constructing the spaces and
objects in the scene, you must carefully place lights to establish the mood or
atmosphere, place cameras to establish the view, apply surfaces to the objects to give
them texture and character, and place backdrops to establish an environmental context.
Of course, producing an image with more realism requires more detail and accuracy in
the data describing the scene. To further complicate things, many of the techniques used
are not direct analogues to the real world but tricks of the “smoke and mirrors” variety
that are used simply to produce the picture. They are similar to stage sets which provide

100

Fifth Computer Graphics Workshop USENIX Association



the illusion of reality when seen from a particular viewpoint. In the case of the
workstation vendor who wanted the render button, most of the wireframe and shaded
images on their graphic workstations were of CAD or scientific data. The underlying data
structures did not have all of the scene information necessary to construct a realistic
image. They contained only enough information for simple display techniques. They did
not contain information rich enough to construct a photorealistic image.

A render button to make the wireframe image photorealistic

The Personal Visualizer was developed to fulfill the promise of the render button. It is
designed to enable a casual user to create a photorealistic image. The Personal Visualizer
provides a data management system to assemble into a scene all of the components
necessary to make a picture. Once the scene is described, you may generate a picture or
sequence of pictures at various levels of realism. You need not create geometric data;

data translators allow geometric data to be imported from a CAD system or modeling
package.

The Personal Visualizer is organized into a core product that provides basic scene
assembly, data management, and rendering capabilities; and a set of options that extend
the functionality of the core. The options provide capabilities to create geometry,
motion, or surfaces; output images to video; and more extensive import of geometric data
from CAD systems. The core Personal Visualizer is bundled on graphic workstations and

the options are sold by Wavefront. The options allow a user to configure a visualization
tool to meet his or her specific needs.

The user interface was the primary focus of the Personal Visualizer development effort.
We developed it around a graphic user interface to provide access to a wide range of
users. Since the Personal Visualizer was intended for a broad audience, we tried to create
a simple, concise product that was easy to understand and use instead of producing a
feature-laden application. Whenever we were confronted with a choice between a

powerful but complex feature and reduced but conceptually clear functionality, we chose

conceptual clarity and integrity.

USENIX Association Fifth Computer Graphics Workshop

101



This focus on usability and conceptual integrity was difficult for many members of the
Wavefront staff. We were accustomed to pushing the envelope of rendering and animation
technology. Our customers were, by and large, interested in more and more sophisticated
rendering and animation features. Our previous focus was on technology rather than
designing for conceptual clarity. Our culture was one which was very typically UNIX-
oriented in that we viewed products as sets of small, useful tools which were strung
together to achieve a desired effect or result. Trying to build a product for the casual
user forced us to confront a number of issues differently. However, the Personal
Visualizer product is evidence that we were successful in shifting our focus from the
expert to the casual user.

The Personal Visualizer product

The Personal Visualizer's purpose is to make pictures. The core product collects data
from a variety of sources, assembles that data into a scene, enables you to arrange lights
and cameras, and allows you to render an image of the scene. The scene can be rendered at
various levels of realism. The more realism you require, of course, the more
information you have to add to the scene and the more time the image will take to render.
The information you assemble to form a scene consists of a set of resources. The Personal
Visualizer works with the following kinds of resources:

« Objects are geometric data. They provide the shapes that you will
manipulate and place in space to create an image. Objects may be as
simple as cubes or spheres or as complex as airplanes or buildings.
Objects may be grouped together to form more complex objects.

- Surfaces describe color, texture, reflectance, and transparency
properties. Surfaces are applied to objects much like decals are applied to
a model airplane. The surface that is applied to an object will dictate the

level of realism of the rendered image. Alternatively, surfaces may be
used as backdrops.

» Lights describe the direction, color, and falloff of the light sources in a

scene. The lights help establish the mood of the scene and interact with the
surfaces to produce the rendered images.

+» Cameras describe the view of the scene. The actual camera resource
describes attributes such as focal length. The position and direction of the
camera dictates the actual view of the scene.

Pictures are the end results of the rendering process. You can render a
scene and save it as a picture.

102

Fifth Computer Graphics Workshop USENIX Association



backdrop
surface

camera

objects & \

A set of resources comprising a scene

A number of these resources are shipped with the Personal Visualizer and are stored in a
library that all users can access. The library contains several geometric primitives
such as spheres, cones, cubes, and cylinders. In addition, it contains a model of a space
shuttle and a T-45 jet fighter. It also contains a variety of lights, cameras, and surfaces.
The surfaces include transparent surfaces, woods, rocks, metals, and various colors. You
can use any of the resources in the library, import resources created by other
applications, or add options to the Personal Visualizer that create and manipulate

resources. The figure on the previous page shows an example scene with various types of
resources.

The “face” of the Personal Visualizer consists of several different screens or editors.
Each editor is focused on a particular task that the user performs. In the core Personal
Visualizer, there are two editors:

+ The Manager is the editor that you enter when you start the Personal
Visualizer. It helps you organize and manage resources in your own
private work areas. It is where data from other sources is imported to
your work areas and data already in your work areas is exported for use
by other programs or tools. The Manager also allows you to copy
resources from the standard library and to share resources with others
through a mechanism called the exchange.

« The View Editor is where you assemble scenes and render images. It
allows you to add objects and lights to a scene. You can manipulate each of
these resources using standard graphics transforms (translate, rotate,
scale). You can also point lights or cameras at objects or associate
surfaces with objects. Once a scene is assembled, you can test render an
image to the screen or render a picture to save it for future use.

USENIX Association Fifth Computer Graphics Workshop 103



Optional editors that allow you to do things such as create and modify surfaces, paint on
or annotate pictures, create and modify objects, or animate scenes can be added to the
core product.

-_'v-ﬂ'r-—'-
omect =
] - Control Panal Stans Bar
— pus
= deeln
e
o
Work Surfaca

A visual framework common to all editors provides an identity for the Personal
Visualizer

Although each editor has a unique function, all of the editors share a common look and
feel. A set of elements appear in every editor and form a visual framework for the
system. This framework establishes an identity or personality for the product. The
elements make up this framework as shown in the figure above:

» The control panel -- allows you to get information about the state of
the Personal Visualizer, modify preferences, invoke the command
language, return to the Manager, or exit from the Personal Visualizer.

= The status bar -- indicates which items on the screen are currently
selected.

= The work surface - is the background area of the screen. It is the
place where menus, dialog boxes, viewports, and other graphic elements
appear.

104 Fifth Computer Graphics Workshop USENIX Association



<]

The Personal Visualizer user interface is comprised of common graphic
elements that form a consistent graphic vocabulary.

In addition to the common elements that appear in every editor, each editor is
constructed from a standard set of graphic elements. These elements include menus,
viewports, dialog boxes, and property sheets. The figure on the following page shows
examples of some of these elements. We used these elements throughout the Personal
Visualizer to ensure a consistent visual vocabulary and style. We tried to achieve

conceptual integrity that was as effective as that of the Xerox Star™ [2,3] and the Apple
Macintosh™ desktop.

To supplement the graphic user interface, we incorporated a programmable command
language that provides access to all of the functionality of the product. This allows
experienced users to work more quickly and to construct “programs” that provide
higher-level functionality tailored to a particular use. We crafted the command language

with the same view toward consistency and conceptual integrity that we used for the
graphic user interface.

USENIX Association Fifth Computer Graphics Workshop 105



Issues - What decisions did we face?

In developing the Wavefront Personal Visualizer, we had to confront a number of tough
design issues. These issues, in some cases, challenged the basic tenets upon which we had
built our high-end products. In other cases, they were new concerns that arose from
trying to address a broad class of users.

The major issues we confronted are discussed below. First, the issue is defined as a
question or set of questions. Following this is a brief discussion of our approach to the
issue. In most cases, the discussion does not completely answer the questions posed. It is
intended that the questions be used as a point of departure for further discussion and
thought, not that they be completely addressed in this paper. These issues are arranged
into four categories: design, rendering, interaction, and infrastructure.

Design Issues deal with the way the actual features, look and feel, and configuration of
the product is determined.

= How should personal visualization products be designed? Personal
visualization products pose a rigorous design challenge. How do we make
something complex simple to use yet provide enough power for the high-end
user? How do we layer capability to grow with the user's competence? Making
things easy to use is different from pushing the high-end of technology. It
requires different skills than devising a ray-tracing algorithm or radiosity
technique. What skills and approaches to product design are required for
personal visualization?

In designing the Personal Visualizer, we used a full-time product designer
dedicated to the project. His job was to ensure that the conceptual integrity of the
product was maintained. He worked extensively with the developers, technical
writers, and marketing staff to ensure that the product was perceived as an
integrated whole. Although the design effort was successful, in retrospect we
would do some things differently:

* Build a user’s conceptual model early in the process and
maintain it. We should have built an explicit model of how our
user perceived the product and constantly tested the design against
that model.

Build and maintain a glossary. We often found over the course
of the project that we called something by many different names or,
conversely, that we overloaded certain terms. We should have built
a glossary of all of the terminology that the user saw and constantly
evaluated the glossary against the user's conceptual model.

Prototype. We spent a lot of time discussing various design
alternatives. However, most people could not evaluate and critique
design decisions effectively until they became concrete through

106

Fifth Computer Graphics Workshop USENTX Association




representation in a prototype. We did most of our prototyping on
paper. We should have developed more interactive prototypes and
made rapid prototypes an integral part of our design and
development process.

* Usability test. When the product got into the hands of real users,
we often found that they had problems we did not anticipate or had
good ideas that were too late to implement. We would do much more

usability testing with real users early on in the design and
development process.

* How do you build the correct user’s conceptual model? Who are the
users of a persanal visualization product and what characteristics do they have?
Users may have a broad range of skills and computer and graphics literacy. How
do you make a personal visualization product easy for the novice yet powerful
enough to satisfy the proficient? Is it appropriate to try building a product that
attempts to serve the needs of both the expert and the novice user? What is the
user's mental model of the tool and how can it be reinforced by the product?

The best way to build a model of how the user views the system is to understand
your user thoroughly and frequently test the model against the user and against
the product. We had difficulty understanding our users, since most of
Wavefront's traditional user base consisted of professional animators. It was
difficult for them to place themselves into the shoes of a novice user. We got the

most valuable information from users once we had the product out into their
hands in the testing cycle.

» Is it better to provide one universal tool or lots of little tools? To
provide seamless access to visualization tools, two choices exist. You can create
a “universal system” which does many things, or a collection of small, focused
tools that talk to each other. Which is more effective?

To the user, this should not make a lot of difference. The structuring of
applications into tools or editors is more an artifact of the way we design and
implement user interfaces than the way someone would like to work. In our case,
we provide a universal tool in that we provide a framework which is consistent
throughout the Personal Visualizer, but we break functionality into separate
editors that have limited scope and function. In effect, our editors are viewed as
small, focused tools by the user. This kind of partitioning of functionality seems
to be effective in keeping each tool simple. However, as the number of tools
grows, it is difficult to keep navigation between the tools simple and to provide a
clear picture of how total functionality is segmented between the tools.

» How do you avoid creeping featuritis? Personal visualization is a new,
exciting technology. Everyone has features and functions they would like to see
incorporated in personal visualization products. The temptation is to become all
things to all people. Unfortunately, this may resuit in a product that does a lot of

USENIX Association Fifth Computer Graphics Workshop 107



things but none of them weil. How do you develop a visualization tool with broad
appeal, yet maintain a clear, clean, simple product?

Time and market constraints help with this problem. We found it a constant
battle to keep the product from becoming an accretion of interesting but
unrelated ideas and features. We had to constantly focus on maintaining
simplicity and integrity. Of course, as the end of development loomed closer and
people realized that infinite time to develop was not available, it was much easier
to find out what was important and what was not. In addition to time pressure,
maintaining a clear focus on the product's purpose and intended user can help
control random feature addition and maintain conceptual integrity.

Rendering Issues deal with the way a personal visualization product deals with
graphic display and rendering.

- What level of realism is appropriate? In the entertainment market we
assumed photorealism was the goal. However, to achieve photorealistic effects,
we often have to go to great pains to set up data. Are users willing to pay the
costs of photorealism? Can we make it easy for “Joe Public™ to achieve
realism? Does “Joe Public® want to achieve photorealism? Does photorealism
obscure or enhance the message? Are there ethical questions concerned with
producing photorealistic images?

We provide a range of levels of realism in the Personal Visualizer. In fact, we
make extensive use of hardware shading, and the user can interact with a scene
using a very high level of realism without resorting to software rendering. It is
clear that many users do not need or want a high level of realism. However, we
feel that the standard of realism that users expect to see will rise as the
capability to produce such realism becomes accessible and the cost becomes
reasonable. We must keep in mind, however, that most people who use computer
graphics are trying to do useful work, not just produce pictures. Pictures enable
them to do something. Realism may or may not help that person get their job
done. It should be viewed simply as another tool in their repertoire.

« What happens when graphics become ubiquitous? Workstation vendors
are all interested in providing graphics capability. Hardware shading and
intrinsic graphics libraries are becoming standard on many workstation
products. How does this affect the development of personal visualization
products? Will this cause a shift of focus from rendering techniques to
interaction techniques?

We designed the Personal Visualizer to take advantage of hardware rendering
capabilities that exist on various graphic workstations. It is structured such that
the transition from hardware rendering to software rendering is seamless,
although there is a discontinuity from interactive performance to waiting for a
picture to render. It is clear that more and more rendering capabilities will be
built into hardware or into low-level system software. Software techniques,
however, will be able to provide more realism for some time to come. The real

108 Fifth Computer Graphics Workshop USENIX Association



problem, though, is not one of rendering or realism. The real problem is how to
use sophisticated rendering technology that comes with the hardware. Harnessing
all of the “gee-whiz” rendering techniques to do something useful is a much
different problem from rendering. Doing useful work with hardware rendering
requires good interaction techniques. When realistic rendering becomes
ubiquitous, we will be able to turn our attention to the real problem at hand, how
to use visualization techniques to accomplish useful work.

Interaction Issues deal with the dialog between the human user and the personal
visualization product.

« What style of interaction is appropriate? Two traditional alternatives
are graphic interaction and command-based interaction. Some people prefer to
use typed commands or scripting languages to interact with an application.
Others prefer graphic user interfaces. Which is more appropriate? Are the two
approaches mutually exclusive?

Although the current trend is toward graphic user interfaces, there are still a lot
of reasons to use commands that you type at the keyboard. Commands can be more
succinct and precise than graphic interactions, can be grouped into scripts for
repeated execution, and may be combined with programming constructs to allow
extension of the base functionality of the product. We are starting to see
scripting languages incorporated into graphic user interfaces. HyperTalk,
HyperCard's scripting language, is a good example of this. Combining a graphic
user interface and a programmable command language resuits in more power and
flexibility than either approach taken separately. Providing both allows users to
select the interaction mode that best suits their needs. We provide both in the
Personal Visualizer. In our implementation, the command language and graphic
user interface are relatively independent of each other. You have to switch back
and forth between the two styles of interaction. A superior implementation would
~ closely integrate the two means of interaction so they worked together.

= How should a personal visualization product deal with multimedia?
Media such as sound, video, kinesthesia, and tactile are becoming more
pervasive. Soon they will be integrated into hardware and software
environments. How can a personal visualization product exploit these
capabilities? For example, now video is expensive and messy. How can we make
it easy and inexpensive for the user to access?

In the Personal Visualizer, we used one medium (the graphic display), three
channels (mouse and keyboard in and graphic display out), and three
dimensions. However, this is only a modest taste of the possibilities in a personal
visualization tool. There is no question that personal visualization tools should be
integrated with multimedia technology. We interact with the real world using all
of our senses. It is imperative that we interact with our visualization tools in a
similar fashion. It will be necessary to build mechanisms into the infrastructure
needed for personal visualization tools to support multimedia, multi-channel,
and multi-dimensional interaction between the user and computer. This will

USENIX Association Fifth Computer Graphics Workshop



substantially increase the communication bandwidth between the user and the
computer. Currently, UNIX workstations don't even deal well with video output,

let alone other types of media. Thus, we still have a long way to go before dealing
effectively with multimedia.

Infrastructure issues deal with the ways personal visualization tools relate to their

operating environment (hardware, UNIX, graphics libraries) and other visualization
tools.

« What is the role of UNIX? UNIX has many features that allow clean
integration of tools and provide power to the expert user. However, UNIX can be
quite daunting to the casual user. How can a personal visualization product
coexist peacefully with UNIX? Should the two ignore each other or is there a
graceful way to integrate the best of both worlds?

Qur charter for the Personal Visualizer was to make visualization as accessible
as possible for the casual user. One of the most difficult learning problems for
new Wavefront users is learning about and dealing with UNIX. In addition, there
is currently a lot of work in the UNIX community aimed at hiding the raw UNIX
user interface and providing a more accessible interface such as Silicon
Graphics' WorkSpace [4], NextStep, and OpenlLook to make UNIX appealing to a
broader range of users. Thus, we chose to ignore UNIX once a user has invoked the
Personal Visualizer. As the work on making UNIX more accessible progresses, we

expect to tie the Personal Visualizer more closely to standard UNIX graphic user
interface techniques.

+ Where does the data go? Graphics applications require lots of data and
various data elements may be closely related. The UNIX file system and a byte-
stream data model may not be appropriate for a personal visualization product.
The complexity of graphic data may not lend itself to such an approach. How do
we organize data and present that organization to a casual user in a way that

makes sense? How can we make the management of data seamless and effortless
for the casual user?

A scene may contain a lot of data and there may be complex relationships between
data elements. If we kept all the data for each scene in one file, the file would be
big and cumbersome and it would be difficult to share data elements between
scenes. If we kept the scene data in a lot of small files, a user might inadvertently
corrupt the scene by removing or renaming some of the files. Ideally we wanted a
file system that let us control user access. Since we did not have such a scheme
available, we decided to hide the database from the user. The database exists in a
hidden subdirectory below the user's home directory. We provide data
manipulation capability in the manager. The user is discouraged from directly
manipulating the database. This was (and still is) a fairly controversial issue
within Wavefront. The other alternative is to let the user use the UNIX file
system directly. Given our approach of hiding UNIX from the user, letting the
user deal with the file system directly did not seem appropriate.

110 Fifth Computer Graphics Workshop USENIX Association



« How do we fit personal visualization tools together? To allow
seamless integration of tools, a number of standards are needed. These include
data interchange, look and feel, portability, networking, live links, and
peripheral device standards.

UNIX has a tradition that supports building a lot of little, focused tocls, and
stringing them together to do useful work. The operating environment supports
such a model through the file system and mechanisms like pipes. It works very
well for byte-stream data such as text. It does not work so well for complex
graphic data. The intent behind UMIX is a good one. The models it supports,
however, are not appropriate for the kinds of data that must be supported in a
personal graphics system. Supporting personal graphics requires a new
infrastructure that deals with graphic data and the interaction of graphic
software components. Lacking such an infrastructure, we had to build our own. |
have to admit that, although the intent was to build an infrastructure that
supported the linking together of a lot of small tools, the one we developed was a
bit too monolithic. We are now working to rectify that problem.

« How does a personal visualization product adapt to changing
environments ? The hardware and operating environments in which personal
visualization products operate is changing very rapidly. New hardware,
applications, peripheral devices, communications technology, etc. are

continually evolving. How can a personal visualization product adapt to these
changes? 24

Eventually, the underlying hardware and operating environment will be of little
concern to the developers of visualization tools. We are already beginning to see
less reliance on hardware environments because of the proliferation of UNIX.
This is the result of the use of standard hardware components and the
standardization of the UNIX operating system. Unfortunately, no clearly
established standards exist for graphic user interfaces, graphics display
libraries, or rendering. As these standards become established, visualization
tools will adapt to new environments easily. In effect, they will be tied to an
infrastructure which abstracts them from the details of hardware and operating
environment.

One common theme throughout many of these issues is that we need an infrastructure to
support personal visualization tools. In the absence of such an infrastructure, we had to
invent one for the Personal Visualizer. However, it was a massive effort. It is not
practical for everyone who wants to build a personal visualization tool to build such an
infrastructure. We needed something that would abstract hardware, peripheral devices,
operating environment, and graphics display and interaction in such a way that
anomalies are avoided. UNIX was designed as such an infrastructure for text-based
systems and has proven to be a very robust infrastructure for such systems. However, it
is beginning to show signs of stress when dealing with personal graphics systems. What
is needed is a new infrastructure (or extensions of the old infrastructure) that supports
the needs of personal visualization tools.

USENTX Association Fifth Computer Graphics Workshop

111



Conclusion - What does the future hold for
personal visualization?

The Wavefront Personal Visualizer is the first step toward personal visualization tools
that will be commonplace in the future. The real limitation of the Personal Visualizer is
that it is primarily an output tool. It shows the results of rendering a scene that
represents some real-world or artificial environment or phenomenon. It has limited
capabilities to manipulate, interact with, and explore that environment or phenomenon.
We have a long way to go before we fully achieve the kind of pictorial conversation

discussed by Rob Myers in 1986 where a true graphic dialog is carried out between
humans and computers [5].

| hope that personal visualization tools of the future are truly transparent to the user.
Graphics will be ubiquitous. Just as the text-based computer now permeates our lives
so, too, will graphics-based computers. They will deal inherently with three dimensions
since the world that they interact with and represent is three-dimensional. They will
also be multimedia and will carry on dialog with humans through multiple
communication channels. We will need to build visualization tools that can harness all of
this communications and capability.

Although the graphical user interface of the Personal Visualizer is a big step toward
making photorealistic rendering accessible to the casual user, it is my hope that we will
look back on such tools as complex and cumbersome in the future. We need to strive for
personal visualization tools that enable us to manipulate objects and environments in the
computer as easily as we manipulate them in the real world.

Acknowledgements

The Wavefront Personal Visualizer was developed by Chris Kitrick, Dave Immel, Julie
Daily, Cliff Brett, Lindy Lindstrom, Jay Tomlinson, and Josh Aller. Roy Hall, Kim
Shelley, Don Brittain, and Jon Barber developed software components that were used in
the Personal Visualizer. Derry Frost was the product designer and was responsible for
the conceptual integrity of the product. Diane Ramey, Catherine Babine, and Brad Weed
wrote the documentation and the on-line help. Steve Miley was responsible for
configuration management and release engineering. Jim Hill and Patsy Crawford tested
the product and helped customers with beta testing. Karen Gadway provided
administrative support. Each of these individuals as well as many others contributed to
the success of the project and grappled with the issues described in this paper.

The Wavefront Personal Visualizer was developed in conjunction with Silicon Graphics,
Inc. Silicon Graphics provided the original impetus for the project and was the
originator of the “render button” concept. Tim Heidmann, Ed Bank, and Trish Jones
from Silicon Graphics worked closely with us in our development effort.

112 Fifth Computer Graphics Workshop USENIX Association



Julie Daily, Derry Frost, Diane Ramey, Chris Kitrick, Dave Immel, Karen Gadway, and
Care Heller-Pittman made helpful suggestions and comments in reviewing this paper for
publication. Derry Frost and Diane Ramey assisted in preparing the figures.

References

[1] Frederick P. Brooks, The Mythical Man-Month, Essays on Software
Engineering. Addison-Wesley. 1975. Page43.

[2] Dr. Daniel E. Lipkie, Steven R. Evans, John K. Newlin, Robert L.
Weissman. Star Graphics: An Object-Oriented Implementation.

Computer Graphics. Vol 16., Number 3. ACM Siggraph. July 1982. Page
115-124,

[3] Jeff Johnson, Theresa L. Roberts, William Verplank, David C. Smith,
Charles H. Irby, Marian Beard, Kevin Mackey. The Xerox Star: A
Retrospective. Computer. Vol 22. Number 9. |IEEE Computer Society.
September 1989. Page 11-29.

[4] Working in a New Space. Silicon Graphics, Inc. 19839,

[5] Rob Mjrers. Pictorial Conversation: Design Considerations for
Interactive Graphical Media. Proceedings of the 1986 Monterey

Computer Graphics Workshop. USENIX Association. November 1986.
Page 17-35.

USENIX Association Fifth Computer Graphics Workshop 113





